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LETTER TO THE EDITOR 

Magnon generation by laser beam scanning along a 
ferromagnet surface 

I V Baryakhtarts and A E Chubykalot: 
t Institute for Low Temperature Physics and Engineering, 47 Lenin Avenue, 
Kharkov310164, USSR 
8 Department of Theoretical Physics, Kharkov State University, Kharkov 31CUJ07, USSR 

Received 21 December 1990 

Abstract. A new method of spin wave generation by laser beam scanningalonga ferromagnet 
surface is proposed. It is shown that due to the action of the beam a local magnetic 
inhomogeneity appears that can be considered as a source of Cherenkov radiation, Dep- 
endingon the formofthe beamcrosssectionandpropertiesofthe ferromagnet, the formation 
of a one-, two- or three-dimensional murce is possible. 

It is well known that laser radiation action on a solid body is accompanied by the 
generation of acoustic waves. It has been shown both theoretically (1, 21 and experi- 
mentally [>5] (for the case of a low-power beam) that the generation is most effective 
when the beam moves along the surface of a solid with the velocity Vclose to the velocity 
of sound. In other words, the intensity of the generation is maximal if the Cherenkov 
radiation condition is satisfied. It is obvious that if a solid body is magneto-ordered we 
can expect the radiation of not only acoustic but also spin waves. The Cherenkov 
mechanism is a rather effective means of spin wave generation. A charged particle 
propagating in the ferromagnet [6] as well as the moving domain wall [7] are examples 
of Cherenkov radiation sources. 

In the present letter we consider a local magnetic inhomogeneity (LMI) stimulated 
by thermal action of a laser beam scanning along the ferromagnet surface. We consider 
a moving inhomogeneity of this type to be a source of Cherenkov generation of spin 
waves (magnons) and propose a simple way of calculating the power of this source. 

Let us consider the following problem. Suppose that a laser beam scans a hard semi- 
infinite ferromagnet. As a result a local change in the ferromagnet's temperature AT@) 
arises. According to Bloch's law a local change of magnetization AM(x) takes place and 
a LML appears. Then AM(x) can be written as follows, 

AM(x) = -Wo(T'D/TZO)AT(x) (1) 
where MO is the saturation magnetization, Tis the temperature in the ferromagnet and 
T, is the Curie temperature. When a laser beam is scanning along the surface, a LMI 
moves parallel to it with the velocity V.  Therefore, a moving LMI can be considered as a 
Cherenkov source of spin waves (magnons) since the characteristic velocity of the heat 
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propagation from thelocal thermal source issufficiently smaller than thevelocity Vofthe 
source. Let us assume that a laser beam follows a line perpendicular to the ferromagnet 
surface. Then, since the problem is symmetric with respect to the surface, we may 
consider the problem of magnon generation not in semi-infinite geometry but in infinite 
geometry. In the present letter we are not interested in surface effects, i.e. we assume, 
below, that the characteristic size of the LMI is sufficiently larger than the length of 
surface waves. In this way the formation of a one-, two- or three-dimensional source of 
magnons is possible depending on the form of the cross section of the laser beam and on 
the depth of its penetration into the ferromagnet. For example, if the penetration depth 
of a beam with a circular cross section is of the order of the beam diameter we have a 
three-dimensional source. If the cross section is in the form of a narrow strip and the 
body is transparent, then a one-dimensional source is formed. 

To describe the process of magnon radiation by means of a LMI we need a proper 
Hamiltonian of interaction. Taking into account aU the remarks above we consider a 
Hamiltonian for the interaction between LMI and magnons in the following form 

Here Q is the system’s volume, cg‘ and cq are operators of creation and annihilation of 
magnons, U is the velocity of the LMI and q is the wave vector. The amplitude U, is 
determined by a Fourier component of magnetization, i.e. U, - AM(q). 

Since we do not know the exact structure of the LMI we use the following assumptions 
in order to proceed with calculations. We assume that the local heating is fast, i.e. 
At + Ax + re ,  where At = s/ro. s is the threshold velocity at which the Cherenkov 
resonance condition is satisfied, ro is the radius of the LMI, Ar  = kAT/Io, k is the 
Boltzmann constant, 1, is the laser radiation power and T~ is the characteristic tem- 
perature propagation time. Here we assume that all emitted energy isconverted to heat. 
Consequently, we may suppose that the temperature distribution in a LMI is determined 
by theintensitydistributioninthelaserbeamcrosssection whichisknown tobedescribed 
by the formula 

J - J o  exp(-r2/r?,) r2 = x2 + y 2 ,  

As follows from the Bloch law, the magnetization in the LMI is distributed according to 
the same formula. The Fourier component of magnetization can easily be obtained 
then in the case of a one-dimensional source, and the amplitude of interaction can be 
presented as follows 

U ,  = (3x0/2)  (xpsTMZ/QT2)’PATo exp( -q2x2,/4) (3) 

wherexo is the width of the cross section of the beam (in the form of a narrow strip) and 
I(B is the Bohr magneton. For a three-dimensional source the result is 

U ,  = ( ~ ~ ~ / ~ ) ( I C ~ ~ ~ T M ~ / Q T ~ ) ” ~ A T ~  exp(-qzr$/4) (4) 
where ro is radius of the cross section of the beam and q = 141. 

Magnon generation by any source leads to a change in the energy of the magnon 
subsystem. The radiation power can be determined as a rate of change of magnon 
energy,E,induced by itsinteractionwi thamovingsource. Itisobviousthatthe radiation 
is possible if the frequency of the emitted magnon is sufficiently larger than its relaxation 
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frequency. Assuming that this condition is satisfied, and using equation (Z), the 
expression for E can be presented as follows 

E =  [SL/(2~f i )~] (2n/ f i )  I 1(1q12~,6(~, -k*at)dk (5) 

where E, is the magnon energy and k = fig is its quasimomentum. Equation (5) can be 
obtained by means of thermodynamical perturbation theory [SI. 

To obtain the concrete form of E we use the long-wave approximation for the 
magnon spectrum: 

E ,  = ho, = hwo(1 + I;iq2) (6)  
where I, is the characteristic ferromagnetic length. In the case of a one-dimensional 
source, substituting equation (3) into equation (9, we obtain the following expression 
for E: 

= 9 [&f,)pc,TA Ti /h( h ) ’  T:] ( X i  W @ / S ) ~ ~ D (  CY). (7) 
Here 

(a* - l)-’”[(l + Gt+,)exp(-AGt+)) 

Il0(a) = + (1 + G:-)) exp(-AG?+)] C Y >  1 

a‘: 1 

s = UOWO A = x8/2Ii G($) = CY _C ((U’ - I)’/’. (8) 

where b 
C Y =  v / s  

As follows from equation (7), at a = 1 the radiation power becomes infinite and for 
CY --f m the value of E tends to zero. This result is connected with the fact that the system 
is one-dimensional, more exactly with the absence of Mach’s cone. It is not possible to 
avoid this within the framework of the model proposed. The situation can be changed 
if we introduce the relaxation of the system. 

In the three-dimensional case, substituting equation (4) into equatipn (5) and using 
a spherical coordinate system, we obtain the following expression for E: 

E3D = 4 ( M , ) ~ , T A T ? , / Z ~ T ; )  (r{oO/s)13D(a). (9) 
Here 

n3(2B)-*@-’[(ZBGf_) + 2 + 2B) exp(-BG:-)) 

- (ZBGt,, + 2 + 2B) exp(-BGt+,)J a > l  

10 CY<1 
13D(a) = 

where B = ra/21i and CY and G(=) are defined in equation (8). The function ISD(a) is 
plotted in figure 1. It is interesting that in this case the radiation power tends to zero in 
both limiting cases CY+ 1 and (U- m and therefore certainly has a maximum. 

The radiation is generated in the continuum spectrum of the magnon wave vector. 
The angle between the direction of the source motion and the direction of emission is 
varied in the region 1/a G cos 0 < 1. Every value of e corresponds to emission at some 
definite value of q: 

COS e = [@,(I + rg$)] /~(~q .  (10) 
The results obtained allow us to estimate the value of the radiation power First 
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Figure 1. The plot of the function 1 which 
is proportional to the radiation power E 
(see equation(9)) plottedagainst CY = ui.. 
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of all, in both one- and three-dimensional cases, the value k tends to zero as l/o for 
a+ m. This fact confirms that it is possible to employ the linear theory (2) for the case 
of rather large cr. If we suppose that equation (9) is valid for all CY (at least, that real 
values are close to what we can obtain from it) we can estimate the maximal value of 
&,. Assuming that MO = 100 G ,  1, = IO-1 cm and I, = lO-'cm, we have E3D = 
0.2 x erg s-l. The estimated value is obviously a little larger than the real one since 
we do not take the relaxation into account. In this way, we propose a new means of spin 
wave generation. 
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